If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+18x+24=0
a = 1; b = 18; c = +24;
Δ = b2-4ac
Δ = 182-4·1·24
Δ = 228
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{228}=\sqrt{4*57}=\sqrt{4}*\sqrt{57}=2\sqrt{57}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-2\sqrt{57}}{2*1}=\frac{-18-2\sqrt{57}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+2\sqrt{57}}{2*1}=\frac{-18+2\sqrt{57}}{2} $
| 4.2+3.9+5+(x)=21.5 | | 7x-8=-85 | | 3+4b=7b-18 | | 89m=356 | | 1+3(x-6)=52 | | 9w=12+7w | | 3-2/3a=4 | | k-(-45)=-67 | | 40=7j+2j | | 40=7j=2j | | 8x-3x+4=36 | | 3c+15=-22+17 | | 7(3s+2)=140 | | 7^x-1=10 | | 2(-2+x)=x-1/4 | | x2+3x+1=5 | | 17-x=2x-2 | | (x+(x*0.66))=22 | | 1/20x^2+45=0 | | 2.8/(x)=0.64 | | 8s(s+3)=72 | | -5=-14x | | 1-9x=9-9x | | -11=-8x | | 119=80+6×x | | 1/7x-11/7=3x | | -2x=-5x-24 | | 5y-9+y+45=5y+40-1y | | -x-14=6x | | 7y+14=2× | | 3w+5=4 | | 8+10z-4=5z+44-3z |